Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122814, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201329

RESUMO

γ-Glutamytranspeptidase (GGT) is an important tumor biomarker that widely appears in the tumor cells. Therefore, accurate imaging and detection of GGT activity in live cells, serum and pathological cells grasp great importance for the diagnosis, management, and treatment of cancer. Herein, 2-(2-hydroxyl-phenyl)-6-chloro-4-(3H)-quinazolinone (HPQ) is considered as the fluorophore probe for the detection of GGT activity, which is known for the typical mechanism of excited-state intramolecular proton transfer (ESIPT). All the simulations adopted to evaluate the sensing mechanism were carried out via DFT and TDDFT calculations at CAM-B3LYP/TZVP level of theory. The emission properties of HPQ and HPQ-TD are thoroughly studied to understand the photoinduced electron transfer (PET) and excited state intramolecular proton transfer (ESIPT) process. The results reveal that the fluorescence quenching of HPQ (enol form) is assigned to the PET process, whereas the large Stokes shift in fluorescence emission of HPQ (keto form) is related with ESIPT mechanism. The obtained results are further cross validated by frontier molecular orbital (FMO) analysis, geometric analysis, and potential energy curve (PEC) scanning. Our calculations provide powerful evidence for the ESIPT based sensing mechanism of HPQ (keto-enol form) for GGT activity.


Assuntos
Corantes Fluorescentes , Prótons , Modelos Moleculares , Diagnóstico por Imagem , Teoria da Densidade Funcional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...